On the rate of convergence of sequential unconstrained minimization techniques

نویسنده

  • A. A. KAPLAN
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternating Minimization as Sequential Unconstrained Minimization: A Survey

Sequential unconstrained minimization is a general iterative method for minimizing a function over a given set. At each step of the iteration we minimize the sum of the objective function and an auxiliary function. The aim is to select the auxiliary functions so that, at least, we get convergence in function value to the constrained minimum. The SUMMA is a broad class of these methods for which...

متن کامل

An Unconstrained Minimization Approach to the Solution of Optimization Problems with Simple Bounds

A new method for the solution of minimization problems with simple bounds is presented. Global convergence of a general scheme requiring the solution of a single linear system at each iteration is proved and a superlinear convergence rate is established without requiring the strict complementarity assumption. The theory presented covers Newton and Quasi-Newton methods, allows rapid changes in t...

متن کامل

A Globally Convergent Primal-dual Interior-point Filter Method for Nonlinear Programming: New Filter Optimality Measures and Computational Results

In this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, apar...

متن کامل

Using Sequential Unconstrained Minimization Techniques to simplify SVM solvers

In this paper, we apply Sequential Unconstrained Minimization Techniques (SUMTs) to the classical formulations of both the classical L1 norm SVM and the least squares SVM. We show that each can be solved as a sequence of unconstrained optimization problems with only box constraints. We propose relaxed SVM and relaxed LSSVM formulations that correspond to a single problem in the corresponding up...

متن کامل

A particle swarm optimization algorithm for minimization analysis of cost-sensitive attack graphs

To prevent an exploit, the security analyst must implement a suitable countermeasure. In this paper, we consider cost-sensitive attack graphs (CAGs) for network vulnerability analysis. In these attack graphs, a weight is assigned to each countermeasure to represent the cost of its implementation. There may be multiple countermeasures with different weights for preventing a single exploit. Also,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017